Revision Algebra 1 & 2

Algebra 1

(a) Formulae
(b) Factorisation
(c) Linear Equations
(d) Simultaneous equations
(e) Quadratic equations
(f) Inequalities

Algebra 2

(a) Algebraic Fractions
(b) Subject of a formula
(c) Direct and Inverse proportion
(d) Indices
(e) Inequalities
(f) Linear Programming
7 Solve the inequality \(3 < 2x - 5 < 7\).

\[
3 + 5 < 2x < 7 + 5 \\
8 < 2x < 12 \\
4 < x < 6
\]

Answer \(4 < x < 6\) \(\ldots\) \(\ldots\) \([2]\)

10 Work out as a single fraction

\[
\frac{2(x+4) - (x-3)}{(x-3)(x+4)} - \frac{1}{x+4}
\]

\[
\frac{2x+8 - x+3}{x^2+x-12}
\]

\[
\frac{x+11}{x^2+x-12}
\]

Answer \(\ldots\) \(\ldots\) \([3]\)
A ferry has a deck area of 3600 m2 for parking cars and trucks. Each car takes up 20 m2 of deck area and each truck takes up 80 m2. On one trip, the ferry carries x cars and y trucks.

(a) Show that this information leads to the inequality $x + 4y \leq 180$.

(b) The charge for the trip is $25 for a car and $50 for a truck. The total amount of money taken is $3000. Write down an equation to represent this information and simplify it.

Answer (b) $x + 2y = 120$ [2]
(c) The line \(x + 4y = 180 \) is drawn on the grid below.

(i) Draw, on the grid, the graph of your equation in part (b).

(ii) Write down a possible number of cars and a possible number of trucks on the trip, which together satisfy both conditions.

50 - 51 cars

29 trucks

Answer (c)(ii) 51 cars, 29 trucks [1]
4. Simplify

\[\frac{2}{3} p^{12} \cdot \frac{3}{4} p^4 = \frac{1}{2} p^{20} \]

Answer: ... [2]

5. Solve the equation

\[\frac{x}{4} - 8 = -2 \]

\[\frac{x}{4} = 6 \]

\[x = 24 \quad \text{Answer } x = 24 \] [2]

11. Solve the simultaneous equations

\[\frac{1}{3} x + y = 5 \]
\[x - 2y = 6 \]

\[\begin{align*}
2x + 2y &= 10 \\
x - 2y &= 6 \\
2x &= 16 \\
x &= 8 \\
8 - 2y &= 6 \\
-2y &= 6 - 8 \\
-2y &= -2 \\
y &= 1
\end{align*} \]

Answer \(x = \frac{8}{2} \quad y = 1 \) [3]
13. Make \(d \) the subject of the formula

\[
c = kd^2 + e.
\]

\[
kd^2 = c - e \quad \Rightarrow \quad d^2 = \frac{c - e}{k}
\]

Answer \(d = \sqrt{\frac{c - e}{k}} \) \([3]\)

20. (a) Factorise completely \(12x^2 - 3y^2 \).

\[
3(4x^2 - y^2) = 3(2x - y)(2x + y)
\]

Answer(a) \(\) \([2]\)

(b) (i) Expand \((x - 3)^2 \).

\[
(x - 3)^2 = (x - 3)(x - 3) = x^2 - 6x + 9
\]

Answer(b)i) \(x^2 - 6x + 9 \) \([2]\)

(ii) \(x^2 - 6x + 10 \) is to be written in the form \((x - p)^2 + q \). Find the values of \(p \) and \(q \).

\[
(x - 3)^2 + 1
\]

Answer(b)ii) \(p = \quad q = \) \([2]\)
8 Solve the simultaneous equations

\[8 \left(\frac{1}{2}x + 2y = 16 \right) \]
\[2 \left(2x + \frac{1}{2}y = 19 \right) \]

\[4x + 4y = 32 \]
\[2x + \frac{1}{2}y = 19 \]

\[15y = 90 \]
\[y = 6 \]

Answer \(x = 8 \)

9 The wavelength, \(\lambda \), of a radio signal is inversely proportional to its frequency, \(f \). When \(f = 200 \), \(\lambda = 1500 \).

(a) Find an equation connecting \(f \) and \(\lambda \).

\[\omega = k \left(\frac{1}{f} \right) \]

\[1500 = k \left(\frac{1}{200} \right) \]

\[k = 300,000 \]

Answer (a) \(\omega = \frac{300,000}{f} \) \[2 \]

(b) Find the value of \(f \) when \(\lambda = 600 \).

\[\lambda = 300,000 \left(\frac{1}{f} \right) \]

\[f = \frac{300,000}{600} \]

\[f = 500 \]

Answer (b) \(f = 500 \) \[1 \]
16 Simplify \[\frac{x+2}{x} - \frac{x}{x+2} \].

Write your answer as a fraction in its simplest form.

\[
\frac{(x+2)^2 - x^2}{x(x+2)} = \frac{x^2 + 4x + 4 - x^2}{x(x+2)} = \frac{4x + 4}{x^2 + 2x}.
\]

Answer \[\frac{4x+4}{x^2 + 2x} \] [3]
19 Solve

(a) \(0.2x + 3.6 = 1.2\).

\[
\begin{align*}
3x + 3.6 &= 12 \\
2x &= 12 - 3.6 \\
2x &= 8.4 \\
x &= -12
\end{align*}
\]

Answer (a) \(x = -12\) \[2\]

(b) \(\frac{2 - 3x}{3} < x + 2\).

\[
\begin{align*}
2 - 3x &< 5x + 10 \\
-8x &< 8 \\
\frac{-8x}{-8} &< \frac{8}{-8} \\
x &> -1
\end{align*}
\]

Answer (b) \[x > -1\] \[3\]

2006

6 Write as a single fraction in its simplest form

\[
\frac{5(x+1) - 4x}{x(x+1)}
\]

\[
\begin{align*}
&= \frac{5x + 5 - 4x}{x(x+1)} \\
&= \frac{x + 5}{x^2 + x}
\end{align*}
\]

Answer \[\frac{x + 5}{x^2 + x}\] \[2\]
12 Solve the simultaneous equations

\[12x + 60y = 360 \]
\[-12x + 200y = 720\]

\[\begin{align*}
-140y &= -420 \\
y &= 3
\end{align*}\]

0.4x + 2y = 10 \quad \rightarrow \quad 4x + 20y = 100 \quad \times 3
0.3x + 5y = 18 \quad \rightarrow \quad 3x + 50y = 180 \quad \times 4

0.4x = 10 \\
x = 25

Answer \ x = \quad \boxed{10}

y = \quad \boxed{3} \quad \text{[3]}

13 Solve the equation

\[\frac{x - 2}{4} = \frac{2x + 5}{3}\]

\[3(x - 2) = 4(2x + 5)\]
\[3x - 6 = 8x + 20\]
\[-5x = 26\]
\[x = -\frac{26}{5}\]

Answer \ x = \quad \boxed{-\frac{26}{5}} \quad \text{[3]}

or \quad -5.2
(a) \(4x^2 - 9\).

\[\text{Answer(a)} \quad (2x + 3)(2x - 3) \quad [1] \]

(b) \(4x^2 - 9x\).

\[\text{Answer(b)} \quad \times (4x - 9) \quad [1] \]

(c) \(4x^2 - 9x + 2\).

\[\text{Answer(c)} \quad (4x - 1)(x - 2) \quad [2] \]
(a) One of the lines in the diagram is labelled $y = mx + c$.
Find the values of m and c.

$$m = \frac{\text{rise}}{\text{run}} = \frac{2}{2} = 1$$

Answer: $m = \frac{1}{1}$ \hspace{1cm} $c = \frac{8}{1}$ \hspace{1cm} [1]

(b) Show, by shading all the unwanted regions on the diagram, the region defined by the inequalities

$$x \geq 1, \quad y \leq mx + c, \quad y \geq x + 2 \quad \text{and} \quad y \geq 4.$$

Write the letter R in the region required. \hspace{1cm} [2]
10. Write as a fraction in its simplest form

\[
\frac{(2x-3)^2 + 4^2}{4(x-3)} + \frac{x-3}{4} = \frac{x^2 - 6x + 9 + 16}{4(x-3)} = \frac{x^2 - 6x + 25}{4x - 12}.
\]

12. By shading the unwanted parts of the grid above, find and label the region \(R \) which satisfies the following three inequalities:

\[
y \geq 3, \quad y \geq 5x \quad \text{and} \quad x + y \leq 6.
\]

[3]
13. The quantity y varies as the cube of $(x+2)$.

- When $x = 0$, $y = 32$.
- Find y when $x = 1$.

\[
\begin{align*}
y &= k (x+2)^3 \\
32 &= k (0+2)^3 \\
32 &= k (8) \\
k &= 4
\end{align*}
\]

\[
y = 4 (x+2)^3
\]

\[
y = 4 (1+2)^2 = 4 (3)^2 = 36
\]

\[y = 118\]

Answer: $y = \ldots$ [3]

17. (a) $\sqrt{32} = 2^5$. Find the value of p.

\[
\begin{align*}
(2^5)^{\frac{1}{2}} &= 2^p \\
2^{\frac{5}{2}} &= 2^p \\
p &= \frac{5}{2}
\end{align*}
\]

Answer: $p = \ldots$ [2]

(b) $\sqrt[3]{\frac{1}{8}} = 2^q$. Find the value of q.

\[
\begin{align*}
\left(\frac{1}{8}\right)^{\frac{1}{3}} &= 2^q \\
\left(\frac{1}{2^3}\right)^{\frac{1}{3}} &= 2^q \\
\left(2^{-3}\right)^{\frac{1}{3}} &= 2^q
\end{align*}
\]

Answer: $q = \ldots$ [2]

2008

2. Simplify

\[
\frac{5}{3} + \frac{5x}{9} - \frac{5x}{18}
\]

LCM: 18

\[
\begin{align*}
&= \frac{6x + 10x - 5x}{18} \\
&= \frac{11x}{18}
\end{align*}
\]

Answer: $\frac{11x}{18}$ [2]
8. Simplify \((27x^3)^{\frac{1}{3}}\).
\[
(3^3 x^3)^{\frac{2}{3}}
\]
\[
(3^2)^{\frac{2}{3}} (x^3)^{\frac{2}{3}}
\]
\[
9x^2
\]

Answer: \(9x^2\) \[2\]

13. Solve the inequality

\[
\frac{2x-5}{8} > \frac{x+4}{3}
\]
\[
3(2x-5) > (x+4)8
\]
\[
6x-15 > 8x+32
\]
\[
-2x > 47
\]
\[
-2
\]
\[
x < -\frac{47}{2}
\]
\[
x < -23.5
\]

Answer: \(x < -23.5\) \[3\]
16. Find the co-ordinates of the point of intersection of the straight lines

\[
\begin{align*}
2x + 3y &= 11, \quad \times 3 \\
3x - 5y &= -12, \quad \times 2
\end{align*}
\]

\[
\begin{align*}
6x + 9y &= 33 \\
6x - 10y &= -24
\end{align*}
\]

\[
\begin{align*}
19y &= 57 \\
y &= 3 \\
2x + 3(3) &= 11 \\
6x &= 11 - 9 \\
6x &= 2 \\
x &= \frac{1}{3}
\end{align*}
\]

Answer \((\frac{1}{3}, 3)\) [3]

9. Rearrange the formula to make \(y\) the subject.

\[
x + \frac{\sqrt{y}}{9} = 1
\]

\[
\begin{align*}
\frac{\sqrt{y}}{9} &= 1 - x \\
\sqrt{y} &= 9 - 9x \\
y &= (9 - 9x)^2
\end{align*}
\]

Answer \(y = \ldots\) [3]

\[
y = 81 - 162x + 81x^2
\]
10 Write \(\frac{1}{c} + \frac{1}{d} - \frac{c-d}{cd} \) as a single fraction in its simplest form.

\[
\frac{d + c - (c-d)}{cd} = \frac{2d}{cd}
\]

Answer \(\frac{2}{c} \) \[3\]

12 Solve the simultaneous equations

\[
\begin{align*}
2y + 3x &= 6, \\
x &= 4y + 16.
\end{align*}
\]

\[
\begin{align*}
2y + 3(4y + 16) &= 6 \quad &x &= 4(-3) + 16 \\
2y + 12y + 48 &= 6 \quad &= -12 + 16 \\
14y &= -42 \quad &= 4 \\
y &= -3
\end{align*}
\]

Answer \(x = \frac{4}{4} \) \[3\]

\(y = \frac{-3}{3} \) \[3\]

13 A spray can is used to paint a wall. The thickness of the paint on the wall is \(t \). The distance of the spray can from the wall is \(d \).

\(t \) is inversely proportional to the square of \(d \).

\[
t = \frac{k \times 1}{d^2}
\]

Find \(t \) when \(d = 8 \).

\[
t = \frac{12.8 \times 1}{8^2} = 0.128
\]

\(k = 12.8 \)

Answer \(t = \frac{1}{d^2} \) \[3\]
(a) Draw the three lines $y = 4$, $2x - y = 4$ and $x + y = 6$ on the grid above.

(b) Write the letter R in the region defined by the three inequalities below.

\[
y \leq 4 \quad 2x - y \geq 4 \quad x + y \geq 6
\]
4. Write as a single fraction \(\frac{\frac{3a}{8} + \frac{4}{5}}{40} \).

\[\frac{15a + 32}{40} \]

Answer \[\frac{15a + 32}{40} \] \[\text{[2]} \]

10. Make \(x \) the subject of the formula.

\[p = \frac{x + 3}{x} \]

\[p \cdot x = x + 3 \]

\[p \cdot x - x = 3 \]

\[x (p - 1) = 3 \]

\[x = \frac{3}{p - 1} \]

Answer \(x = \) \[\text{[4]} \]
By shading the unwanted regions of the grid above, find and label the region \(R \) which satisfies the following four inequalities.

\[
\begin{align*}
y &\geq 2 \\
x + y &
\geq 6 \\
y &\leq x + 4 \\
x + 2y &\leq 18
\end{align*}
\]

\[[4] \]

2011

8. \(p \) varies directly as the square root of \(q \).
\(p = 8 \) when \(q = 25 \).

Find \(p \) when \(q = 100 \).

\[
\begin{align*}
p &= k \sqrt{q} \\
p &= k \sqrt{100} \\
p &= 5k \\
\frac{8}{5} &= k
\end{align*}
\]

Answer \(p = \frac{16}{5} \)

\[[3] \]
11 Rearrange the formula \(c = \frac{4}{a-b} \) to make \(a \) the subject.

\[
c(a-b) = 4, \quad ac - bc = 4, \quad ac = 4 + bc, \quad a = \frac{4 + bc}{c}
\]

Answer \(a = \) ... [3]

12 Solve the simultaneous equations.

\[
x - 5y = 0 \quad \rightarrow \quad x = 5y
15x + 10y = 17
\]

\[
15(5y) + 10y = 17, \quad x = 5y = 0
7.5y + 10y = 17, \quad x = 5(0.2) = 0
8.5y = 17, \quad x = 1
y = 0.2
\]

Answer \(x = \) ... [3]

\[y = 0.2 \]
15. Write the following as a single fraction in its simplest form.

\[
\frac{x+1}{x+5} - \frac{x}{x+1} \cdot \frac{(x+1)^3 - x(x+5)}{(x+5)(x+1)} \cdot \frac{x^2 + 2x + 1 - x^2 - 5x}{(x+5)(x+1)} \cdot \frac{-3x + 1}{(x+5)(x+1)}
\]

Answer .. [4]

17. Simplify

(a) \(32x^8 + 8x^2\),

\[
\frac{32x^8}{8x^2} = 4x^{8-2} = 4x^6
\]

Answer(a) ... [2]

(b) \(\left(\frac{x^2}{64}\right)^{\frac{3}{2}}\),

\[
= \frac{x^{3\left(\frac{2}{3}\right)}}{64^{\frac{2}{3}}} = \frac{x^2}{2^4} = \frac{x^2}{16}
\]

Answer(b) ... [2]
2012

4

\[\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{p}{12} \]

Work out the value of \(p \).

Show all your working.

\[
12 \left(\frac{3}{5} + \frac{1}{3} + \frac{1}{4} = \frac{p}{12} \right) 12
\]

\[
18 + 4 + 3 = p
\]

\[
p = 25
\]

Answer \(p = 25 \) \quad [2]

6

\(x \) is a positive integer and \(15x - 43 < 5x + 2 \).

Work out the possible values of \(x \).

\[
15x - 43 < 5x + 2
\]

\[
10x < 45
\]

\[
x < 4.5
\]

Answer \(x \leq 4.5 \) \quad [3]
11. \(y \) varies directly as the square of \((x - 3)\).
\(y = 16 \) when \(x = 1 \).

Find \(y \) when \(x = 10 \).

\[
y = k (x-3)^2
\]
\[
16 = k (1-3)^2
\]
\[
16 = k (4)
\]
\[
k = 4
\]

\[
y = 4 (x-3)^2
\]
\[
y = 4 (10-3)^2
\]
\[
= 4 (7)^2
\]
\[
= 196
\]

\[\text{Answer } y = 196\] [3]

2013

2. Factorise completely.

\[
kp + 3k + mp + 3m
\]

\[
k(p + 3) + m(p + 3)
\]

\[
(k + m)(p + 3)
\]

\[\text{Answer} \] [2]
12 Solve the equation.

\[5(2y - 17) = 60\]

\[10y - 85 = 60\]

\[10y = 145\]

\[y = 14.5\]

Answer: \(y = 14.5\) [3]

14 \(y\) is inversely proportional to \(x^3\).
\(y = 5\) when \(x = 2\).

Find \(y\) when \(x = 4\).

\[y = \frac{k \times \frac{1}{x^3}}{2} = \frac{k}{8}\]

\[5 = \frac{k}{8}\]

\[k = 40\]

\[y = \frac{40 \times \frac{1}{x^3}}{4^3}\]

\[y = \frac{40}{64}\]

\[y = \frac{5}{8} = 0.625\]

Answer: \(y = 0.625\) [3]
15 Use the quadratic equation formula to solve

\[2x^2 + 7x - 3 = 0 \]

Show all your working and give your answers correct to 2 decimal places.

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

\[
x = \frac{-7 \pm \sqrt{(-7)^2 - 4(2)(-3)}}{2(2)}
\]

\[
x = \frac{-7 \pm \sqrt{49 + 24}}{4}
\]

\[
x = \frac{-7 \pm \sqrt{73}}{4}
\]

\[
\left\lfloor \frac{-7 + \sqrt{73}}{4} \right\rfloor \approx 0.39
\]

\[
\frac{-7 - \sqrt{73}}{4} \approx -3.89
\]

Answer \(x = \ldots \) or \(x = \ldots \) [4]
Solve $6x + 3 < x < 3x + 9$ for integer values of x.

\[6x + 3 \leq 3x + 9\]

\[2x \leq 6\]

\[x \leq 3\]

\[6x - x \leq 3\]

\[-2x \leq 9\]

\[x \geq -\frac{9}{2}\]

\[5x \leq -3\]

\[x \leq -\frac{3}{5}\]

Answer \[\frac{-9}{2} \leq x \leq -\frac{3}{5}\]

Solution set \[\frac{-9}{2} \leq x \leq -\frac{3}{5}\]